HUNFALVY JÁNOS KÉT TANÍTÁSI NYELVŰ KÖZGAZDASÁGI TECHNIKUM LÁTOGATÁSA

Múlt a nehéz, a könnyű jövő

Szabó Rudolf

Rejtő Sándor Pro Technológia Alapítvány

2024. március 11.

Paradigm Change

The lighweigt is the future

- Sustainability
- Material
- Fiber structures
- Carbon fibers,
- graphene,
- nano Tube
- Lightweight structural materials
- Renewable energy
- Electrification
- Energy storage
- 3D printing

Materials Evolution, changes in energy sourse

The Pursuit of Higher Performing Materials...

CFRP + Graphene,

Stone & Concrete Biomass Biomass Renewable

Metals Coal

Plastics
Oil
Fossil

Glass Fiber Composites Gas Carbon Fiber
Composites
Fossil
Renewable

Nanotube Renewable Hydrogen

Commercialization...

Relative importance of material development through history

Stone

3D printing

Carbon fiber 3D printing could bring high performance and complexity

Industrial revolution

Industrie 4.0

LO Internet of Things (IoT); →Internetre Csatlakoztatott Eszközök Cyber-Physical Systems (CPS)

Jacquard 1805

1784: First mechanical loom

Industrial revolution
 Follows introduction of
 water- and steam powered
 mechanical manufacturing
 facilities

1870: First production line

2. Industrial revolution Follows introduction of electrically-powered mass production based on the division of labor

3. Industrial revolution Uses electronics and IT to achieve further automation of manufacturing

4. Industrial revolution
Based on Cyber-Physical
Systems

Time

The distribution ratio of structural materials is carbon fiber resp. comparison of CFRP and aluminum in 2023

Global plastic production 1950-2050

Definition Innovation

- An innovation is understood of the first commercial use, or the first commercial application of inventions to the achievement of corporate objectives.
- An innovation surrounds the Invention, the commercial development and market introduction.

BIONIC DESIGN: The future of lightweight structures

Bone structure of birds

Cross section of plant stem (hemp) and technical (composte) stem

Cross-section of plant stem

Technical "plant" stem

Microprocessing system

Mechatronika ElektronikaElektrotechnika Aktorok, szenzorok Mechatronika Folyamat számítás szabályozás Informatika Mechatronika

Mechanika

Polyacrylonitrile chain molecule

Specific tensile strength, o* [cN/tex] 400 Dyneema 250 Carbon 70-60 50-Polyamide 6.6 Polyester 40-Cotton Polyacryl 30 20 Wool Viscose Acetate Polyurethan 10-25 15 20 30 35 595 600 5 10 Elongation, ε [%]

Fibre elongationspecific tensile strength properties

Carbon atom

Carbon atom is linked to a variety of other compounds

Atomics structure of carbon fiber

Features of carbon fiber

- Carbon fibers are extremly fine fiber (d= 5-7 μ m, ~0,7 dtex)
- Consisting mostly of carbon atoms (>0,95%)
- Carbon fiber is mostly used to reinforce composite matrials: CFRP- carbon fiber reinforced polymers, C&C, C-SiC
- Carbon fibers are produced in tow (bundles or yarns) ranging 1000 filaments (1k): Small tow: 1k, 3k, 6k, 12k, 24k Large tow: 48k, 50k, 60k ...

Mechanical properties of important structural materials

Composition of Composites

Fiber/Filament Reinforcement

- High strength
- High stiffness
- Low density

Matrix

- Good shear properties
- Low density

Composite

- High strength
- High stiffness
- Good shear properties
- Low density

Manufacture of carbon fiber reinforced composites (CFRP)

HONEYCOMB SANDWICH WITH PREPREG SKINS

Advantages:

very low weight, high stiffness, durable, design freedom, reduced production costs.

What are the properties of a sandwich construction?

Properties	Solid material	Core thickness t	Core thickness 3t
	+	2t	4t
E I, Flexural rigidity	1.0	7.0	37.0
σ, Flexural strength	1.0	3.5	9.2
m, mass/weight	1.0	1.03	1.06

Strength

& Stiffness

Lightweighting

Part Count Reduction & Functions Integration

Durability

Hybridization & Bonding with other Materials

High Strength-to-Weight Ratio

Carbonfiber – evolution of prices

In volume

VOLUME OF COMPOSITE MATERIALS

Breakdown by geography (location where the part is produced)

In 2023, the global market for composites material is estimated at 13 Mt

VOLUME OF COMPOSITE MATERIALS

Solutions and innovations for all markets

Defence, Security & Ballistics

Design, Furniture and Home

Electrical, Electronics, Telecoms & Appliances

Pipe, tanks, water treatment & sewage

Railway Vehicles & Infrastructure

Renewable Energy

Some example of FRP applications

Aerospace

Sport Goods

Transportation

Energy, chemistry industry

Rockets, satellites, military, commercial airplane

Cars, trains, buses, marine, boats

Wind turbine, oil exploration, tubes, pressure vessels

Development of electricity demand

Yet with 20W of energy, it consumes around of 20% an individual's basal metabolic rate

All Renewables Market Share Evolution

Evolution of lectricity price in Europe, EUR/MWh

Evolution of the price of solar panels in Hungary, EUR/Watt

Global average cost of wind, solar technologies

Madárszárny elv (madár, repülő, szélmalom, szálturbina

Fiber technologies → From small to gigantic structures

Flying starlings form

1-1 billion carbon fibers to stiffen the wind blade Blade length, l=115,5 m, Blade mas~70 t Wind speed, v= 15m/s Performance, P=15MW

High bending stiffness CFRP spar caps with UD fiber orientacio

Hungary

Importance of lightweight in vehicle construction

Reduction of emissions

Impact of the car weight on CO₂ Emission:

Weight reduction of 100 kg effects:

CO₂ Emission

- 8.8* up to - 12.5** gr./km

Reducing cost of ownership

Impact of the car weight on fuel consumption:

Weight reduction of 100 kg effects:

Fuel consumption

- 0.35* up to -0.5** I/100 km

Increasing

Impact of the car weight on driving performance:

Weight reduction effects generally:

- Longitudinal / transversal dynamics
- + Axle load distribution

TECHNOLOGY: THE CONNECTION BETWEEN SPEED AND SAFETY

Low speed - High risk

High speed - Low risk

"It is all about probabilities. You can never make it safe.
F1 is not safe but you can do a lot of work to
reduce the probability of somebody getting hurt."

Max Mosley Former FIA President

Propulsion system of vehicles

-- Internal-combustion engine

to burn petroleum-based fuel, generate heat, and push pistons up and down to drive the transmission and the wheels.

-- (BEVs - Battery Electric Vehicles

100% electric without any other power source. The main drawbacks of these vehicles are

- their price (mainly due to the battery cost),
- the long charging time and
- their limited range (150 to 300 km).

-- FCEVs - Fuel Cell Electric Vehicles

This technology is promising, but market development is a major challenge:

- economical production of hydrogen by hydrolysis of renewable energies,
- development of efficient fuel cells,
- high pressure (700 bar) tanks and
- in the field of refueling the gas station network.

Why Composit in Car Production?

However composit has a higher price compare to metall, it is cheaper under a certain amount of production

In automotive, the shortage of semiconductors and the Covid crisis have negatively impacted production. They industry recovery should take around 2026.

Globally, the production of electric vehicles

(composites intensive) is expected to reach ~30% at the 2030 horizon

Schematic diagram of hydrogen drive

Fuel Cell Basics (2)

$$H_2 + \frac{1}{2} O_2 \rightarrow H_2 O + heat$$

Global Natural Gas Vehicle (NGV) Population

By 2023, natural gas-powered vehicles (NGVs) could number more than 65 million

Production of hydrogen cars is expected to grow strongly over the next decade

Specific energy of hydrogen and lithium-ion battery, W [kWh/kg]

Medical equipments

X-ray equipments, operation parts, protheses, wheelchairs

Present and future of electric mobility

What is the Hydrogen Economy?

 To limit global warming to 2°C vs. 2010 levels, world CO₂ emissions must drop > 60%/yr until 2050.

LiTraCon – Light-transmitting Concrete (info@litracon.hu)

Global Carbon Emissions from Energy Production

OCEAN PLASTIC

CLOSED LOOP CONCEPT

CLOSING THE LOOP WITH TENAX® RECYCLING SOLUTIONS

Köszönöm a figyelmet!